Search results for "activated sludge model"

showing 10 items of 20 documents

Uncertainty of a biological nitrogen and phosphorus removal model

2010

In the last few years, the use of mathematical models in wastewater treatment plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only a few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sou…

Settore ICAR/03 - Ingegneria Sanitaria-Ambientalenitrogen phosphorus removaluncertainty analysicalibrationwastewater modellingactivated sludge model
researchProduct

An extension of ASM2d including pH calculation

2003

This paper presents an extension of the Activated Sludge Model No. 2d (ASM2d) including a chemical model able to calculate the pH value in biological processes. The developed chemical model incorporates the complete set of chemical species affecting the pH value to ASM2d describing non-equilibrium biochemical processes. It considers the system formed by one aqueous phase, in which biochemical processes take place, and one gaseous phase, and is based on the assumptions of instantaneous chemical equilibrium under liquid phase and kinetically governed mass transport between the liquid and gas phase. The ASM2d enlargement comprises the addition of every component affecting the pH value and an i…

Environmental EngineeringChromatographySewageChemistryEcological ModelingThermodynamicsSequencing batch reactorActivated sludge modelHydrogen-Ion ConcentrationModels TheoreticalWaste Disposal FluidPollutionDissociation (chemistry)PhosphatesKineticsBioreactorsEnhanced biological phosphorus removalActivated sludgeMass transferChemical equilibriumWaste Management and DisposalWater Science and TechnologyCivil and Structural EngineeringWaste disposalWater Research
researchProduct

Potential of interactive multiobjective optimization in supporting the design of a groundwater biodenitrification process

2019

The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive multiobjective optimization (MOO) method over a posteriori methods in an unexplored field, namely the design of a biological treatment plant for drinking water production, that tackles the process drawbacks, contrarily to what happens in a traditional volumetric-load-driven design procedure. Specifically, we consider a groundwater denitrification biofilter, simulated by the Activated Sludge Model modified with two-stage denitrification kinetics. Three objectives were defined (nitr…

Pareto optimalityDecision support systemdecision supportEnvironmental EngineeringProcess (engineering)Computer science0208 environmental biotechnologypäätöksentukijärjestelmät02 engineering and technologyActivated sludge model010501 environmental sciencesManagement Monitoring Policy and Law01 natural sciencesMulti-objective optimizationInteractive methodIND-NIMBUSWater treatmentSensitivity (control systems)Process engineeringWaste Management and DisposalGroundwater0105 earth and related environmental sciencesvedenpuhdistusNitratesSewagepareto optimalitypareto-tehokkuusbusiness.industrywater treatmentGeneral Medicineinteractive methodvedenkäsittelymonitavoiteoptimointi020801 environmental engineeringDecision supportRange (mathematics)Decision support; IND-NIMBUS; Interactive method; NIMBUS method; Pareto optimality; Water treatment; Algorithms; Denitrification; Nitrates; Sewage; GroundwaterDenitrificationA priori and a posterioriWater treatmentNIMBUS methodbusinessAlgorithms
researchProduct

A practical protocol for calibration of nutrient removal wastewater treatment models

2011

Activated sludge models can be very useful for designing and managing wastewater treatment plants (WWTPs). However, as with every model, they need to be calibrated for correct and reliable application. Activated sludge model calibration is still a crucial point that needs appropriate guidance. Indeed, although calibration protocols have been developed, the model calibration still represents the main bottleneck to modelling. This paper presents a procedure for the calibration of an activated sludge model based on a comprehensive sensitivity analysis and a novel step-wise Monte Carlo-based calibration of the subset of influential parameters. In the proposed procedure the complex calibration i…

Protocol (science)Atmospheric ScienceEngineeringMathematical optimizationSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleCalibration (statistics)business.industryMonte Carlo methodsensitivity analysiActivated sludge modelidentifiabilityGeotechnical Engineering and Engineering Geologycalibration protocolGLUEBottleneckASMIdentifiabilitySensitivity (control systems)businessGLUEwastewater treatment modellingSimulationCivil and Structural EngineeringWater Science and TechnologyJournal of Hydroinformatics
researchProduct

Evaluation of activated sludge model no.2 at high phosphorus concentrations

2001

This paper presents laboratory scale experimentation carried out to study enhanced biological phosphorus removal at high phosphorus concentrations in a sequencing batch reactor. Four series of data obtained in a sequencing batch reactor are examined in light of the Activated Sludge Model No. 2. This model was calibrated using data from the first and second series working at low phosphorus concentrations. The Activated Sludge Model No. 2 successfully characterised the enhanced biological phosphorus removal performance of the sequencing batch reactor at low phosphorus concentrations. The calibrated model was then used to adjust experimental results of the other series working at high phosphor…

High phosphoruschemistry.chemical_elementSequencing batch reactorActivated sludge modelBioreactorsEnvironmental ChemistryWaste Management and DisposalSoil MicrobiologyWater Science and TechnologySewageChemistryPrecipitation (chemistry)PhosphorusEnvironmental engineeringPhosphorusGeneral MedicineHydrogen-Ion ConcentrationModels TheoreticalEnhanced biological phosphorus removalActivated sludgeSolubilityEnvironmental chemistryCalibrationEnvironmental PollutionAnaerobic exerciseForecasting
researchProduct

Modelling and dynamic simulation of hybrid moving bed biofilm reactors: model concepts and application to a pilot plant.

2011

In the recent years, there has been an increasing interest in the development of hybrid reactors, especially in the up-grading of existing activated sludge plants that are no longer able to comply with concentration limits established by regulatory agencies. In such systems the biomass grows both as suspended flocs and as biofilm. In this way, it is possible to obtain a higher biomass concentration in the reactor, but without any significant increase of the load to the final clarifier. The paper presents the setting-up of a dynamic mathematical model aimed at quantitatively describing the biokinetic processes occurring in a hybrid moving bed biofilm reactor (HMBBR), and, more in general, in…

EngineeringEnvironmental EngineeringBiofilm modellingSettore ICAR/03 - Ingegneria Sanitaria-Ambientalebusiness.industryMoving bed biofilm reactorHybrid moving bed biofilm reactorBiomedical EngineeringEnvironmental engineeringfood and beveragesBiomassBioengineeringActivated sludge modelWastewater treatmentcomplex mixturesClarifierDynamic simulationKinetic parameterActivated sludgePilot plantSewage treatmentbusinessDynamic simulationBiotechnology
researchProduct

Application of the General Model "Biological Nutrient Removal Model No.1" to upgrade two full-scale WWTPs

2012

In this paper, two practical case studies for upgrading two wastewater treatment plants (WWTPs) using the general model BNRM1 (Biological Nutrient Removal Model No. 1) are presented. In the first case study, the Tarragona WWTP was upgraded by reducing the phosphorus load to the anaerobic digester in order to minimize the precipitation problems. Phosphorus load reduction was accomplished by mixing the primary sludge and the secondary sludge and by elutriating the mixed sludge. In the second case study, the Alcantarilla WWTP, the nutrient removal was enhanced by maintaining a relatively low dissolved oxygen concentration in Stage A to maintain the acidogenic bacteria activity. The VFA produce…

AcidogenesisBiological nutrient removalWATER TREATMENT PLANTSAerobic bacteriachemistry.chemical_elementActivated sludge modelPhosphatesWater PurificationWASTE-WATERBNRM1Environmental ChemistryAnaerobiosisOrganic ChemicalsWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEWater Science and TechnologyCALIBRATIONSewagePhosphorusEnvironmental engineeringGeneral MedicineModels TheoreticalASM2DAerobiosisACTIVATED-SLUDGE MODELActivated sludge modelsEnhanced biological phosphorus removalWastewaterchemistrySIMULATIONPlant-wide mathematical modellingEnvironmental scienceSewage treatmentWater treatmentSanitary EngineeringWWTP upgrading
researchProduct

Mathematical protocols for calibration of wastewater treatment models

2015

Activated sludge models can be very useful for designing and managing wastewater treatment plants (WWTPs). However, as with every model, they need to be calibrated for correct and reliable application. Activated sludge model calibration is still a crucial point that needs appropriate guidance. Indeed, although calibration protocols have been developed, the model calibration still represents the main bottleneck to modelling. This abstract shows a procedure for the calibration of an activated sludge model based on a comprehensive sensitivity analysis and a novel step-wise Monte Carlo-based calibration of the subset of influential parameters. The key point of the step-wise procedure is that ca…

Calibration protocol activated sludge model wastewater treatment.
researchProduct

Quantifying sensitivity and uncertainty analysis of a new mathematical model for the evaluation of greenhouse gas emissions from membrane bioreactors

2015

Abstract A new mathematical model able to quantify greenhouse gas (GHG) emissions in terms of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) for a Membrane Bioreactor (MBR) is presented. The proposed mathematical model is of the Activated Sludge Model (ASM) family and takes into account simultaneously both biological and physical processes (e.g., membrane fouling). An analysis of the key factors and sources of uncertainty influencing GHG emissions is also presented. Specifically, the standardized regression coefficient, the Extended-FAST and a Monte Carlo based method are employed for assessing model factors which influence three performance indicators: effluent quality index, operational…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleGlobal warmingMonte Carlo methodMembrane foulingEnvironmental engineeringFiltration and SeparationActivated sludge modelWastewater treatmentMembrane bioreactorBiochemistryMembrane technologyEmissionPilot plantGreenhouse gasEnvironmental scienceGeneral Materials ScienceMaterials Science (all)Emissions; Global warming; Model-based evaluation; Wastewater treatment; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationModel-based evaluationPhysical and Theoretical ChemistryUncertainty analysis
researchProduct

Effect of pH on biological phosphorus uptake.

2006

An anaerobic aerobic laboratory scale sequencing batch reactor (SBR) was operated to study the effect of pH on enhanced biological phosphorus removal. Seven steady states were achieved under different operating conditions. In all of them, a slight variation in the pH value was observed during anaerobic phase. However, pH rose significantly during aerobic phase. The increase observed was due to phosphorus uptake and carbon dioxide stripping. When pH was higher than 8.2-8.25 the phosphorus uptake rate clearly decreased. The capability of Activated Sludge Model No. 2d (ASM2d) and Biological Nutrient Removal Model No. 1 (BNRM1) to simulate experimental results was evaluated. Both models success…

SewageChemistryPhosphorusPolyphosphateInorganic chemistrychemistry.chemical_elementBioengineeringSequencing batch reactorPhosphorusActivated sludge modelHydrogen-Ion ConcentrationApplied Microbiology and BiotechnologyModels BiologicalAerobiosisWater Purificationchemistry.chemical_compoundEnhanced biological phosphorus removalBioreactorsPolyphosphatesCarbon dioxideBioreactorAnaerobiosisAnaerobic exerciseBiotechnologyBiotechnology and bioengineering
researchProduct